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Abstract. A stochastic model for a dynamical system containing a great number of randomly 
interacting species is introduced. In the limit of infinitely many interacting species this 
model becomes exactly solvable and shows a stability-instability transition driven by the 
typical interaction strength and the noise parameter. The dynamical behaviour of the 
system in the stability region of the phase diagram is investigated and compared with 
numerical simulations. The implications of the results on natural ecosystems are 
discussed. 

1. Introduction 

The population dynamics of complex ecosystems is conveniently described by gen- 
eralised Lotka-Volterra equations [ 1 1 .  Recent work using such a description has 
concentrated on modelling the idiotopic network of the immune system [2]. The 
nonlinearity of these equations complicates their anlytical investigation, especially in 
the case of a great number of interacting species. Nevertheless the linear stability 
analysis [3], the investigation of Lyapunov functions [4], graph-theoretical methods 
[5] as well as numerical simulations [6] gave some insight into the behaviour of complex 
ecosystems. In general, persistency and stability is predicted if certain requirements 
concerning the self-regulation and/or the interaction strength are fulfilled. If, for 
example, in completely connected networks the interaction strength exceeds some 
value of the order O ( N - ” 2 ) ,  where N is a big number of interacting species, an 
explosive increase of population occurs. This is due to so-called ‘ghost species’ with 
negative equilibrium populations [7]. 

The aim of the present work is to introduce a model of a complex ecosystem that 
becomes exactly solvable in the limit N + CO and to look for its stability-instability 
transition. The paper is organised as follows. In § 2 the model is presented and 
the stability of its steady state is analysed. The solution of the model is per- 
formed in § 3 and is compared with computer simulations of systems with a large but 
finite number of interacting species. In § 4 the results are summarised and their 
implications for the real world are discussed. Some calculations are delegated to 
appendices 1-3. 

t Work performed within the research programme of the Sonderforschungsbereich 341, Koln-Aachen-Julich. 
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2. The model 

I investigate the stochastic dynamics of a system of randomly interacting species. 
Consider the generalised Lotka-Volterra equation 

where ni( t )  ( i  = 1, .  . . , N )  is the population density of the ith species at time I (clearly 
ni (  t )  2 0). The function J (x)  describes the development of the ith species without 
interacting with other species. The case J(x)  = -b, < 0 means exponential decrease of 
the population density of species i (i.e. species i is a ‘consumer’), and f ; ( x )  = b, > 0 
means exponential increase (i.e. species i is a ‘producer’). In both cases there is no 
self-regulation of the ith population, which has a destabilising effect on the whole 
system. Typical mechanisms for self-regulation in natural ecosystems are, for example, 
a territorial breeding requirement or the crowding effect caused by competition for a 
resource [3]. Therefore it is convenient to consider 

with a z 0. 8, is the saturation population density of the ith species. The case a = 1 
is the Verhulst model for self-regulation [8] and the case a = 0, i.e. J (x )  = -log(x/ e,), 
is the Gompertz model for self-regulation [ 9 ] .  

.$( t )  is a stochastic noise that takes into account the influence of the environment, 
e.g. climate, disease, etc. This multiplicative noise is defined as the Stratonovich type. 
(.Tu), i, j = 1, .  . . , N, is the so-called interaction matrix or coupling matrix. If Jv < 0, 
then Junln,  represents the loss rate of species i due to collision with species j ,  if Ju > 0 
that term represents the growth rate. If J,, < 0 and 4, > 0 the ith species is in prey- 
predator relationship with species j .  The case Jl, < O  and J,, < O  means that species i 
and j interact competitively and the case Ju > 0 and J,, > 0 means positive symbiosis 
between species i and j .  

I consider ( J u ) ,  i, j = 1, .  . . , N, as a random matrix whose elements are indepen- 
dently distributed according to a probability distribution P (  J u )  which is symmetric 
relative to zero. This means that the present ecosystem contains 50% prey-predator 
relationships, 25% competitive interactions and 25% positive symbiotic interactions. 
Because I am interested in the case of infinitely many interacting species, only the first 
two cumulants of the distribution P (  J v )  are important provided the higher cumulants 
are of lower order than 0(1/N).  The distribution 

(3) P(Jz , )  = f s ( J , ,  - J /  N”’) +$s(J,, + J /  N- l l2)  

and the distribution 

lead to the same results for N + CO. I define J to be the ‘typical interaction strength’, 
although the interaction strengths are proportional to J / m .  

For analytical reasons I have chosen the Gompertz model and for simplicity set 
the saturation population densities Oi equal to 1. The effect of randomly distributed 
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Oi will be considered later. The stochastic noise 5( t )  is a stationary Gaussian process 
with the cumulants 

The parameter ff is a measure for the strength of the noise, also called the noise intensity. 
First of all I consider the steady-state solution of (1) for vanishing noise ( a  = 0). 

A steady state n o =  ( n y ,  . .  . , nk) of (1) is defined to be a solution of the fixed-point 
equation 

When none of the np vanish and a steady state does exist, they must satisfy 

In the case of a pure prey-predator system (i.e. (.TI,) is any antisymmetric matrix) one 
can easily show [ l ]  that the function G(t)=C,np[exp(y,(t))-y,(f)]  with y l ( t ) =  
log(n,(t)/n:) is a Lyapunov function (i.e. d/dtG( t )  <0)  for the dynamics described 
by (1) and hence the system develops in time towards the steady state n , ( t )  = ny for 
t + 00. In what follows I give some arguments for the contention that this steady state 
is also reached for t+co in the model described above, where the matrix ( J u )  is not 
antisymmetric. 

Firstly, all finite systems simulated on a computer reach, after a short time ( t  = lo), 
the steady-state solution ny-if this solution of ( 7 )  does exist-no matter which initial 
state was chosen. If no solution of (7)  exists-this happens for a typical interaction 
strength J greater than J,= 0.18-every initial state leads the divergence of some 
population densities and indicates the instability of the system. Thus one can assume 
that this scenario is not much different in a system with a much greater number of 
species than that, which can be simulated on a computer. Secondly, it is possible to 
prove analytically the stability of the steady-state solution for a low enough interaction 
strength J (see appendix 1). Finally in the next section it is shown that at the critical 
interaction strength, where the transition from stability to instability takes place, the 
steady-state solution is the only solution of (1) for N + M if the initial time is shifted 
to -M. 

From the last two remarks one concludes that the dynamical behaviour of the 
system (1) is described by a relaxation to the steady-state solution for low interaction 
strengths and for the highest possible one. Bearing in mind the results of the computer 
simulations mentioned above, one can assume the same behaviour for intermediate 
values of the interaction strength and thus preclude any oscillatory behaviour of the 
dynamics after an infinitely long time has passed since starting from any initial state. 
In the case of non-vanishing noise a f 0 the population densities fluctuate around 
their mean values, which for low enough a are not very different from the steady state 
solution of equation (7) .  If the system is in equilibrium, the time-dependent correlation 
functions are expected to decrease monotonically with time. These considerations are 
important for the selection of the right solution of the saddle point equations that are 
derived in the next section. 
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3. The solution 

Defining 

equation (1) can be written as 

The dot refers to derivative with respect to time. The ‘external fields’ b, ( t )  represent 
time-dependent saturation population densities b,( t )  = log[ e,( t ) ] .  I have set e,( t )  = 1, 
consequently b,( t )  = 0. Equation (9) connects y (  t )  with the stochastic process g( t )  
and has to be used to calculate the generating functional for all correlation and response 
functions of the process y ( t ) .  The quenched disorder in the system caused by the 
random interaction matrix forces one to average this generating functional over the 
distribution (3) or (4). Thus one is led to proceed in the same way as was done earlier 
[ lo] in the dynamical mean-field theory of spin glasses. Averaging out the quenched 
disorder leads to a complete decoupling of the time development of the different 
species and yields in the limit N + CO a self-consistent one-species dynamics 

i l ( t )  = -y1(t )  + c p l ( t )  

( c p Z ( t ) ) k 4  = 0 

( V I (  t )  cpl ( t ’ ) ) {q , )  = 2a8( t - t’)  + J2C( t - t’) .  

(10) 

where c p I (  t )  is a stationary Gaussian process with cumulants 

(11) 

The averaged autocorrelation function C( t - f ’ )  has to be determined self-consistently 
vi a 

C ( t -  t’) = (exP[vl(t)+y,(t’)I){.,~. (12) 

Remembering (8), the physical meaning of C( t - t’) becomes clear: 

1 
N i  

c ( t - t ’ )  = - c (ni( t )  nr ( t’))  

where the brackets (. . .) refer to average with respect to the probability distribution of 
the stochastic process ( ( t )  and to average over the distribution (3) or (4) of the random 
interactions Jy. In writing C (  t - t ’ )  instead of C( t, t’) ,  I have assumed that the initial 
time has gone to -CO and that the system has reached equilibrium. Once the correlation 
function C (  t )  is known all other averaged autocorrelation functions can be calculated 
vi a 

Now one is left with the problem of determining C( t )  by equations (10-12). Introducing 
Z ( t )  = log C ( t ) ,  it can be shown (see appendix 3) that for all times Z( t )  3 0 (i.e. 
C( t )  3 1) and that Z( t )  must obey the Newtonian equation of motion 

(15) 
d 

aZ 
i ( t )  = -- V ( 2 )  



Solvable model of a complex ecosystem 3451 

I 

with the ‘potential’ 

2, = Z(0)  is for J2 # 0 a free parameter which has to be determined with the help of 
the considerations made in the last section. For J2 = 0 it is 2, = 2u. The ‘initial velocity’ 
is given by Z ( 0 )  = -U. 

Firstly I consider the deterministic case u = 0, i.e. Z ( 0 )  = 0. Because the initial time 
has gone to -00, the system is in the steady state, i.e. n (  t )  = no. Therefore the correlation 
function C(t)  is time independent and equal to exp(Zo). For J2< 1/2e the potential 
V ( 2 )  possesses two extrema if 2, is low enough and no extremum if 2, exceeds a 
critical value depending on J2. The former case is depicted in figure 1. Depending 
on Z,, the position of the maximum Z,,, is to the left or to the right of 2,. The 
requirement for constant C (  t )  implies 2, = Z,,,, where Vr(Zmax) = 0 and Vrr(Zmax) < 0. 
The prime means differentiation with respect to 2. This leads to a transcendental 
equation for Zo: 

From the two solutions of (17) which exists as long as J2< 1/2e, the lower one has to 
be chosen. The bigger one would also fulfil the requirement of constant C ( t ) .  But 
choosing that solution would imply a discontinuity in the dependence of ( n 2 )  on the 
interaction strength at J2 = 0, in contradiction with a result of appendix 2. 

Figure 2 shows the mean square population density CO = ( n 2 )  = exp(2,) computed 
by equation (17) in comparison with numerical results for systems with N = 100, 200 
and 400. With the help of the mean-field equations (lo)-( 12) one can easily calculate 
the generating function g(k)  = (exp(iky)) from which it follows that the population 
density n of a species is a random variable that obeys the distribution 

V( 2 )  = - f Z 2 +  J2ez + &ZoZ. (16) 

2, = 2J2 eZO. (17) 

I I I I I 
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Figure 2. The dependence of the mean square population density C(0) = ( n 2 )  on the typical 
interaction strength J 2  for simulated systems with N = 100 (open circles), N = 200 (open 
squares) and N = 400 (open triangles) species (a = 0). There are 500 systemsin each 
ensemble for a certain value of J 2 .  The points near the full curve are those for (n’), where 
the o v e a r  refers to the ensemble average. The upper and lower points are those for 
(n’) * ( ( n 2 ) 2  - ( n 2 ) 2 ) 1 ’ 2 .  The upper and lower points for N = 400 are connected by a vertical 
straight line to indicate error bars. The full curve is the analytical result calculated with 
the help of equation (17) .  

Plnl 

0 0.5 1 0  1 5  2 0  2 5  
n 

Figure 3. The probability distribution (18) of the population densities for three different 
values of the typical interaction strength in comparison with the histograms arising from 
numerical simulations of 500 systems with N = 100 species: J z  = 0.05 (open circles), 
J 2  = 0.10 (open squares) and J z  = 0.15 (open triangles) (a = 0). 



Solvable model of a complex ecosystem 3453 

The moments of this distribution are given by 

(19) 2 k 2 / 4  ( n k ) = ( n  ) . 
It should be remarked that these formulae are valid also for the case of non-vanishing 
noise U # 0, which is treated below. The central quantity for all static distributions is 
the mean square population density. Figure 3 shows histograms for the population 
densities arising from computer simulations for systems with N = 100 species and 
different values of the typical interaction strength 5'. 

Until now I have assumed J*<Jf.= 1/2e=0.184. If J 2 > J f ,  the potential V ( Z )  
has no extremum, regardless of the value of Z,, and no non-negative solution of (15)  
exists. In that case the system is unstable; the population density of at least one species 
diverges. This transition has the following form in systems with a finite number of 
species that can be simulated on the computer. Even for J 2  < Jf some systems which 
belong to an ensemble of systems with given J 2  are unstable, just as for J 2  > Jf some 
systems of the ensemble are still stable. The former occur more often for J 2 f J :  and 
the latter become more rare for increasing J 2 .  As one would expect, this transition 
region localised around Jf shrinks more and more for an increasing number N of 
species. From figure 2 one can see that the fluctuations of the mean square population 
densities around its mean value for the whole ensemble decrease for increasing N. 
For J 2  > 0.16 more than a quarter of all systems of a given ensemble are unstable and 
the fluctuations grow rapidly. Therefore I have not inserted any data for that region. 
Nevertheless one can conclude that for N + CO the analytical curve will be reproduced. 

Now I come to the case a#  0. In recent investigations [ I ,  111 the influence of all 
other species on a certain species in a complex ecosystem was substituted by a Langevin 
force, which means no distinction was made between the stochastic noise caused by 
the environment and by the other species. This corresponds to the case J 2  = 0 and 
a f 0. The potential (16) is then a parabola which is opened in the negative direction. 
It has zeros at 0 and Z,=2u and a maximum at Z0/2= a. The 'total energy' 

E = V(ZO)+$?(Oj2 (20) 

is conserved, so that the motion starts at Zo in the direction of decreasing Z and 
approaches, but never reaches Z,,, within finite times. Hence one gets 

c ( t ) = e x p [ a -  ( l+e-" ' ) l .  (21) 
This picture does not change qualitatively if one smoothly switches on the interaction 
strength. This is indicated in figure 1. Now one has to determine Zo in such a way 
that the initial kinetic energy a2/2 just suffices to reach the local maximum at Z,,, 
(otherwise Z (  t )  would oscillate or become negative). That means 

J2exp( z,) + $a2 = +zkaX + J*  exp( z,,,) + fz,~,,, 
The condition V'(Zmax) = 0 yields 

Zo=2Z,,,-2J2 exp(Z,,,,,). (23) 
Inserting the latter equation into the former, one gets a transcendental equation for 
Z,,,, which can be solved as long as J 2  remains below a critical value Jf(a). Within 
the picture of the motion in the potential (16) this means that too large an initial 
kinetic energy drives a particle behind the well at Z,,, and then into the region Z (  t )  < 0,  
which is forbidden. Hence one obtains a phase diagram shown in figure 4 separating 
the region of stable systems from that of unstable ones. 
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Figure 4. The critical line J : ( c r ) .  The stability-instability transition takes place when 
crossing this line from below. Critical slowing down occurs if the point indicated by the 
circle is approached. 

The asymptotic behaviour of Z( t )  for t + CO is dictated by the curvature of V ( Z )  

(24) 

For given J z  # 0 the relaxation time r increases monotonically with decreasing u. If 
U is fixed, r grows with J 2 .  Critical slowing down, i.e. T +  CO, occurs only for U + 0 
and J 2 +  Jf(0)  = 1/2e simultaneously. This can be easily seen from the fact that only 
in this case do the two extrema of the potential merge into a critical point with 

The system is, of course, non-ergodic; the correlations do not decay completely. 
We have e.g. lim,,,(n(t)n(O))> (n)’ because lim,,,C(t) = exp(Z,,,) and (n)’= 
exp(Z,,,/2). The distribution of the population densities obey again (20) and (21). 
In figure 5 I have depicted the mean square population density as a function of the 
noise parameter for different values of the interaction strength. 

Concluding, I insert some remarks about the response function which is defined 
as follows: 

at the local maximum Z,,,. It is Z(t)-ZmaxKexp(- t / r )  with 

7-1 = 4- v”(zmaX) = 4 1  - J’ exp(zmaX). 

V”(Z,,,) = 0. 

This describes the linear response of the population density of species i at time t 
caused by a small change at time t’ in the saturation population density 0, of the j th  
species. The averaged local response function 

1 
N i  

G( t - t ’ )  = - Gii( t - t ’ )  

has the same form for all values of J 2  and u given by 

G( t )  = exp(e‘-’’) for t > 0. (27) 
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This is due to the lack of correlations between the interaction strengths J ,  and Ai. In 
pure prey-predator systems, where J ,  = - . I j i ,  an oscillatory time dependency of G( t )  
is expected, as will be discussed below. 

Finally, I consider the effect of randomly distributed saturation population 
densities B i ,  which was set to 1 until now. The probability distribution of the population 
densities suggests the following distribution for the Bi, which must be positive: 

P(B)  has a maximum at e,,, = 0, exp(-p2) which becomes more and more sharp for 
p+O. The distribution of ei is constructed in such a way that the external fields 
bi =log 8, in equation ( 9 )  obey a Gaussian distribution with mean b,=log Bo and 
variance p2. Now one has to average the generating functional for all correlation and 
response functions of the process y ( t )  also over this additional disorder and gets a 
self-consistent one-species dynamics in the same way as mentioned above. One ends 
again at (15) and (16) with a modified potential 

V ( Z )  = - & . z ~ + J ~  ez +&(z,+ y ) ~  (29)  

with y = 2bo + p2/2.  For vanishing noise parameter, (+ = 0, the new critical interaction 
strength is 

(30) 

If Bo< 1, i.e. bo< 0, the interval in which J 2  can vary without destabilising the system 
becomes greater than for B o =  1 and this interval shrinks for eo> 1. A finite variance 
p’ diminishes J f .  These effects are qualitatively the same for a# 0. 

~f = a exp[ -( 1 + y ) ] .  

0 0 .4  0.6 1 . 2  1 . 6  

a 
Figure 5. The dependence of the mean square population density (n2) on the noise parameter 
U calculated with the help of equations (22) and (23) for different values of the typical 
interaction strength. The lower straight line is (n2) for J 2 = 0 ,  the upper straight line 
indicates the upper bound of ( n 2 ) .  From right to left (with increasing thickness) the curves 
are drawn for J2=0 .025 ,  J 2 = 0 . 0 5 ,  J2=0.075, J2=0.10, J2=0.125, J2=0.1375, J2=0.15 
and J 2  = 0.1625. 
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4. Discussion 

The proof and localisation of the transition from stability to instability in complex 
ecosystem described by (1) is the essential result of the above investigation. This 
transition takes place when the typical interaction strength, the noise (i.e. the influence 
of the environment) and the saturation population densities exceed a certain critical 
value. This transition is accompanied by a critical slowing down of the dynamics only 
in an exceptional case mentioned above. Remembering the fact that the interaction 
strengths were scaled with a factor 1 / m  the following conclusion is obvious. 

In stable ecosystems with many species the typical interaction strength should be 
lower than in systems with a smaller number of species. This is a feature of many 
ecosystems, as was already noted earlier. ‘From empirical evidence it seems that species 
that interact feebly with others do so with a great number of other species. Conversely, 
species with strong interactions are often part of a system with a small number of 
species’ [ 121. 

I have demonstrated these features for a system that gives no priority to a prey- 
predator relationship between two species. Because natural ecosystems also exhibit 
symbiotic and competitive interactions, a restriction to prey-predator systems seems 
not to be desirable. Nevertheless, the investigation of systems containing a large 
number of prey-predator relationships is interesting, the more so since computer 
simulations show a greater stability for these systems. This indicates that in natural 
ecosystems the prey-predator relationship dominates the type of interaction. 

Of special relevance for a model of the immune system is the requirement for a 
symmetric coupling matrix (J , )  [13]. This is due to the functional equivalence of 
paratope and epitope of the antigenes. Both cases mentioned here can be treated if 
one allows correlations between the distributions of J ,  and .I,[. That means, instead 
of dealing with independently distributed interaction strengths, one has to consider 
now a bivariate distribution for the pairs (J l , ,  .I,z) with N(J,J,,) = AJ’, where the 
correlation parameter A varies between -1 and 1. The case A = -1 is a pure prey- 
predator model, A = 1 implies a symmetric coupling matrix which is relevant for the 
immune system, and A = 0 was treated above. Work investigating the model described 
in § 2 for all values of A is in progress. 

In this context it is worth noting that a generalised Gompertz model 

1 d 
-ni( t )  = ni( t )  [log( y) + Jv log[ nj( t ) ]  + si( t )  
dt  j ( t 0  

which was proposed firstly for two-species systems [ 141 to explain some experimental 
invalidation of the principle of competitive exclusion [ 151, can easily be solved in the 
limit N + CO for all values of the correlation parameter A. This is due to the linearity 
of that model, which becomes evident if we again introduce yi( t )  = logn,( t ) .  But the 
transition from stability to instability at the critical interaction strength (independent 
of the noise parameter a )  

2 1  J,=- 
( l + A ) ’  

can immediately be seen by analysing the stability of the fixed pointy = 0. The complete 
solution of the dynamical problem shows at this line a divergence of the mean square 
population density. The tendency to greater stability for decreasing A following from 
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Figure 6. The dependence of the critical interaction strength Jf on the correlation parameter 
A for the generalised Gompertz model (31). The case A = -1, where J,  = a, corresponds 
to a pure prey-predator system. The lower curve is the critical line J,(A, v=O) for the 
generalised Lotka-Volterra model (1) extrapolated from computer simulations for different 
values of A .  

equation (32) is, as already mentioned, also a feature of Lotka-Volterra models (see 
figure 6) just as is the case for oscillations of the response function (26), which for the 
generalised Gompertz model (31) is 

9; is the derivative of the zeroth modified Bessel function, and ( n )  is the mean 
population density. 

Finally I want to remark that all systems considered in this paper have an unique 
determined steady state that does not depend on the initial conditions. This is not the 
case in competition communities in which all interaction strengths are negative [ 161. 
The dynamics of such systems, the number and size of their basins of attractions, are 
a field of further investigation. 

Appendix 1 

Defining the deviation of the population densities from their steady-state values as 
Sn,(t) = n , ( t )  - ny, equation (1) can be written as 

(Al . l )  

Retaining only linear terms in ani one sees that the eigenvalues of the matrix 
(Al.2) 

decide the stability of the equilibrium. The matrix (J , , )  is random matrix whose elements 
obey the distribution (3) or (4). The eigenvalues of such a matrix are, for N+m,  
uniformly distributed in a circle of radius J in the complex plane [ 171 (the probability 
of finding a finite number of eigenvalues outside this circle is supposed to vanish in 

Ai.  = -ai, + nPJi. 
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the limit N + CO in analogy to the case of a random matrix Jl, belonging to the Gaussian 
orthogonal ensemble). Hence the eigenvalue of the matrix ( A , )  that has the greatest 
real part is lower than -1 + J  max,=,, ,In:}. In appendix 2 it is shown that for J low 
enough the steady state population densities are of order one with probability one. 
Therefore one can choose J low enough (independent of N )  so that all eigenvalues 
of ( A , )  have a negative real part. From this follows the stability of the steady state 
no for low enough interaction strength J. 

Appendix 2 

Consider a certain realisation of the random matrix (B,)  with (BU) = 0, N(B; )  = 1 and 
all other cumulants vanishing. Define the matrix ( J , ) ( E )  = &(Ai j )  and the function F :  
[0, m) x [ O , C O )  + R by 

(A2.1) 

The stable solution of the equation F(n, E )  = O  is denoted by n o ( & ) .  It is nY(0) = 1 for 
i = 1, . . . , N.  The function F is continuously differentiable in ( n o ,  0) and 

(A2.2) 

i.e. the Jacobi matrix of F is non-singular in (no, 0). From the theorem regarding 
implicitly defined functions follows the existence of a S > 0 and a differentiable function 
no: ( - s , + s ) + [ O , ~ ) ~  with no (0 )=( l ,  . . . ,  1) and F ( ~ O ( E ) , E ) = O  for E E ( - & + S ) .  
For low enough E all n p ( ~ )  are positive and not much different from one. Furthermore 
we have 

(A2.3) 

which is a random variable with mean zero and variance one. Therefore all moments 

(A2.4) 

are continuous in E = 0. Until now only a certain realisation of the random matrix 
was considered and their elements were multiplied by E.  Because of the property of 
self-averaging with respect to the interaction strengths, it follows that in large systems, 
N >> 1, the above conclusions hold for any realisation ofthe matrix (JU) and low enough 
typical interaction strength J. 

Appendix 3. 

From equation (10) one concludes that the process yi(t) is given by 

y i ( t )  = J:m d 7  eT-fpi(t). (A3.1) 
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The lower bound of the integral is identical with the initial time which was shifted to 
--CO. The equation (A3.1) describes a linear transformation from the process p,(t) to 
the process yi( t ) .  Therefore y I (  t )  is also a stationary Gaussian process, all of whose 
cumulants vanish except the second. Now, using the identity 

(A3.2) 

where ((A")) means the mth cumulant, equation (12) can be written as 

C(t)  = exp(+(([v(t)+y(0)12))). (A3.3) 

Inserting (A3.1), this yields 
0 0 

d7' eT-r e+((p(T)p(T')))+ d7 d7' e' eT'((p(T)p(Tf)))) 
C(t)=eXP(j;mdTj:X -X -X 

(A3.4) 

where I have used the stationarity of the process p(t) (i.e. ( (p(~)p(~ ' ) ) )= 
( ( ~ ( 7 -  t)p(.r'- t ) ) ) ) .  Remembering equation ( l l ) ,  one gets 

+lo dT jo d + e T  e"J'C(7-T') 
-02 -m 

Introducing the variable Z( t )  = logC( t )  yields an integral equation for Z( t ) :  

(A3.5) 

(A3.6) 
J O  J - m  

with 

Z(0)  = 20- + 2 jo dT jo d7' e' e" J 2  exp(Z( 7 - 7')). (A3.7) 
-m --cc 

After differentiating (A3.6) twice with respect to time ( t  > 0) one gets 

2(t) = z ( ~ ) - J ~  e x p ( z ( t ) ) - + z ( o )  (A3.8) 

which is identical with equations (15)  and (16). Solving equation (A3.8) with respect 
to J2ez and inserting the result into (A3.7), one gets 

Z ( 0 )  = -U. (A3.9) 

Furthermore, it can be seen from equations (A3.6) and (A3.7) that Z(t)>O for all 
times t. (Except for J 2  = 0 and 0- = 0, in which case Z( t )  = 0, i.e. all population densities 
are one. This follows trivially from the steady-state solution of r i i (  t )  = - n i (  t )  logni( t ) . )  
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